Structure

Physi-Chem Properties

Molecular Weight:  222.09
Volume:  229.53
LogP:  2.633
LogD:  3.037
LogS:  -2.367
# Rotatable Bonds:  5
TPSA:  55.76
# H-Bond Aceptor:  4
# H-Bond Donor:  1
# Rings:  1
# Heavy Atoms:  4

MedChem Properties

QED Drug-Likeness Score:  0.625
Synthetic Accessibility Score:  1.886
Fsp3:  0.25
Lipinski Rule-of-5:  Accepted
Pfizer Rule:  Accepted
GSK Rule:  Accepted
BMS Rule:  0
Golden Triangle Rule:  Accepted
Chelating Alert:  1
PAINS Alert:  0

ADMET Properties (ADMETlab2.0)

ADMET: Absorption

Caco-2 Permeability:  -4.549
MDCK Permeability:  2.4665712771820836e-05
Pgp-inhibitor:  0.02
Pgp-substrate:  0.011
Human Intestinal Absorption (HIA):  0.006
20% Bioavailability (F20%):  0.718
30% Bioavailability (F30%):  0.905

ADMET: Distribution

Blood-Brain-Barrier Penetration (BBB):  0.81
Plasma Protein Binding (PPB):  94.43073272705078%
Volume Distribution (VD):  0.729
Pgp-substrate:  6.537950038909912%

ADMET: Metabolism

CYP1A2-inhibitor:  0.978
CYP1A2-substrate:  0.904
CYP2C19-inhibitor:  0.802
CYP2C19-substrate:  0.615
CYP2C9-inhibitor:  0.67
CYP2C9-substrate:  0.904
CYP2D6-inhibitor:  0.231
CYP2D6-substrate:  0.874
CYP3A4-inhibitor:  0.291
CYP3A4-substrate:  0.414

ADMET: Excretion

Clearance (CL):  12.472
Half-life (T1/2):  0.909

ADMET: Toxicity

hERG Blockers:  0.058
Human Hepatotoxicity (H-HT):  0.062
Drug-inuced Liver Injury (DILI):  0.072
AMES Toxicity:  0.185
Rat Oral Acute Toxicity:  0.455
Maximum Recommended Daily Dose:  0.181
Skin Sensitization:  0.931
Carcinogencity:  0.617
Eye Corrosion:  0.062
Eye Irritation:  0.788
Respiratory Toxicity:  0.436

Download Data

Data Type Select
General Info & Identifiers & Properties  
Structure MOL file  
Source Organisms  
Biological Activities  
Similar NPs/Drugs  

  Natural Product: NPC321815

Natural Product ID:  NPC321815
Common Name*:   ATJVZXXHKSYELS-ALCCZGGFSA-N
IUPAC Name:   n.a.
Synonyms:  
Standard InCHIKey:  ATJVZXXHKSYELS-ALCCZGGFSA-N
Standard InCHI:  InChI=1S/C12H14O4/c1-3-16-12(14)7-5-9-4-6-10(13)11(8-9)15-2/h4-8,13H,3H2,1-2H3/b7-5-
SMILES:  CCOC(=O)C=CC1=CC(=C(C=C1)O)OC
Synthetic Gene Cluster:   n.a.
ChEMBL Identifier:   n.a.
PubChem CID:   5712090
Chemical Classification**:  
  • CHEMONTID:0000000 [Organic compounds]
    • [CHEMONTID:0000261] Phenylpropanoids and polyketides
      • [CHEMONTID:0000476] Cinnamic acids and derivatives
        • [CHEMONTID:0001391] Hydroxycinnamic acids and derivatives
          • [CHEMONTID:0000059] Coumaric acids and derivatives

*Note: the InCHIKey will be temporarily assigned as the "Common Name" if no IUPAC name or alternative short name is available.
**Note: the Chemical Classification was calculated by NPClassifier Version 1.5. Reference: PMID:34662515.

  Species Source

Organism ID Organism Name Taxonomy Level Family SuperKingdom Isolation Part Collection Location Collection Time Reference
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota stem bark n.a. n.a. PMID[17489632]
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota n.a. stem n.a. PMID[18484536]
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota stem bark Mukono, Uganda 2005-JUN PMID[19008110]
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota n.a. n.a. n.a. PMID[19299148]
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota n.a. n.a. n.a. PMID[19836230]
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota n.a. n.a. n.a. PMID[20337486]
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota n.a. n.a. n.a. PMID[21116437]
NPO21462 Lannea grandis Species Anacardiaceae Eukaryota n.a. n.a. n.a. Database[HerDing]
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota n.a. n.a. n.a. Database[HerDing]
NPO21462 Lannea grandis Species Anacardiaceae Eukaryota n.a. n.a. n.a. Database[TCMID]
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota n.a. n.a. n.a. Database[TCMID]
NPO21462 Lannea grandis Species Anacardiaceae Eukaryota n.a. n.a. n.a. Database[TCM_Taiwan]
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota n.a. n.a. n.a. Database[TCM_Taiwan]
NPO8526 Erythrina abyssinica Species Fabaceae Eukaryota n.a. n.a. n.a. Database[UNPD]

☑ Note for Reference:
In addition to directly collecting NP source organism data from primary literature (where reference will provided as NCBI PMID or DOI links), NPASS also integrated them from below databases:
UNPD: Universal Natural Products Database [PMID: 23638153].
StreptomeDB: a database of streptomycetes natural products [PMID: 33051671].
TM-MC: a database of medicinal materials and chemical compounds in Northeast Asian traditional medicine [PMID: 26156871].
TCM@Taiwan: a Traditional Chinese Medicine database [PMID: 21253603].
TCMID: a Traditional Chinese Medicine database [PMID: 29106634].
TCMSP: The traditional Chinese medicine systems pharmacology database and analysis platform [PMID: 24735618].
HerDing: a herb recommendation system to treat diseases using genes and chemicals [PMID: 26980517].
MetaboLights: a metabolomics database [PMID: 27010336].
FooDB: a database of constituents, chemistry and biology of food species [www.foodb.ca].

  NP Quantity Composition/Concentration

Organism ID NP ID Organism Material Preparation Organism Part NP Quantity (Standard) NP Quantity (Minimum) NP Quantity (Maximum) Quantity Unit Reference

☑ Note for Reference:
In addition to directly collecting NP quantitative data from primary literature (where reference will provided as NCBI PMID or DOI links), NPASS also integrated NP quantitative records for specific NP domains (e.g., NPS from foods or herbs) from domain-specific databases. These databases include:
DUKE: Dr. Duke's Phytochemical and Ethnobotanical Databases.
PHENOL EXPLORER: is the first comprehensive database on polyphenol content in foods [PMID: 24103452], its homepage can be accessed at here.
FooDB: a database of constituents, chemistry and biology of food species [www.foodb.ca].

  Biological Activity

Target ID Target Type Target Name Target Organism Activity Type Activity Relation Value Unit Reference

☑ Note for Activity Records:
☉ The quantitative biological activities were primarily integrated from ChEMBL (Version-30) database and were also directly collected from PubMed literature. PubMed PMID was provided as the reference link for each activity record.

  Chemically structural similarity: I. Similar Active Natural Products in NPASS

Top-200 similar NPs were calculated against the active-NP-set (includes 4,3285 NPs with experimentally-derived bioactivity available in NPASS)

Similarity level is defined by Tanimoto coefficient (Tc) between two molecules. Tc lies between [0, 1] where '1' indicates the highest similarity. What is Tanimoto coefficient

●  The left chart: Distribution of similarity level between NPC321815 and all remaining natural products in the NPASS database.
●  The right table: Most similar natural products (Tc>=0.56 or Top200).

Similarity Score Similarity Level Natural Product ID

  Chemically structural similarity: II. Similar Clinical/Approved Drugs

Similarity level is defined by Tanimoto coefficient (Tc) between two molecules.

●  The left chart: Distribution of similarity level between NPC321815 and all drugs/candidates.
●  The right table: Most similar clinical/approved drugs (Tc>=0.56 or Top200).

Similarity Score Similarity Level Drug ID Developmental Stage

  Bioactivity similarity: Similar Natural Products in NPASS

Bioactivity similarity was calculated based on bioactivity descriptors of compounds. The bioactivity descriptors were calculated by a recently developed AI algorithm Chemical Checker (CC) [Nature Biotechnology, 38:1087–1096, 2020; Nature Communications, 12:3932, 2021], which evaluated bioactivity similarities at five levels:
A: chemistry similarity;
B: biological targets similarity;
C: networks similarity;
D: cell-based bioactivity similarity;
E: similarity based on clinical data.

Those 5 categories of CC bioactivity descriptors were calculated and then subjected to manifold projection using UMAP algorithm, to project all NPs on a 2-Dimensional space. The current NP was highlighted with a small circle in the 2-D map. Below figures: left-to-right, A-to-E.

A: chemistry similarity
B: biological targets similarity
C: networks similarity
D: cell-based bioactivity similarity
E: similarity based on clinical data