Structure

Physi-Chem Properties

Molecular Weight:  396.23
Volume:  437.912
LogP:  5.276
LogD:  4.503
LogS:  -4.685
# Rotatable Bonds:  9
TPSA:  59.67
# H-Bond Aceptor:  4
# H-Bond Donor:  1
# Rings:  2
# Heavy Atoms:  4

MedChem Properties

QED Drug-Likeness Score:  0.219
Synthetic Accessibility Score:  4.304
Fsp3:  0.4
Lipinski Rule-of-5:  Accepted
Pfizer Rule:  Rejected
GSK Rule:  Rejected
BMS Rule:  0
Golden Triangle Rule:  Accepted
Chelating Alert:  0
PAINS Alert:  0

ADMET Properties (ADMETlab2.0)

ADMET: Absorption

Caco-2 Permeability:  -4.854
MDCK Permeability:  2.4875182134564966e-05
Pgp-inhibitor:  0.116
Pgp-substrate:  0.392
Human Intestinal Absorption (HIA):  0.055
20% Bioavailability (F20%):  0.096
30% Bioavailability (F30%):  0.018

ADMET: Distribution

Blood-Brain-Barrier Penetration (BBB):  0.013
Plasma Protein Binding (PPB):  96.38552856445312%
Volume Distribution (VD):  1.772
Pgp-substrate:  4.162810802459717%

ADMET: Metabolism

CYP1A2-inhibitor:  0.858
CYP1A2-substrate:  0.651
CYP2C19-inhibitor:  0.911
CYP2C19-substrate:  0.091
CYP2C9-inhibitor:  0.884
CYP2C9-substrate:  0.987
CYP2D6-inhibitor:  0.72
CYP2D6-substrate:  0.873
CYP3A4-inhibitor:  0.818
CYP3A4-substrate:  0.215

ADMET: Excretion

Clearance (CL):  3.567
Half-life (T1/2):  0.349

ADMET: Toxicity

hERG Blockers:  0.032
Human Hepatotoxicity (H-HT):  0.888
Drug-inuced Liver Injury (DILI):  0.269
AMES Toxicity:  0.01
Rat Oral Acute Toxicity:  0.024
Maximum Recommended Daily Dose:  0.94
Skin Sensitization:  0.921
Carcinogencity:  0.091
Eye Corrosion:  0.003
Eye Irritation:  0.061
Respiratory Toxicity:  0.882

Download Data

Data Type Select
General Info & Identifiers & Properties  
Structure MOL file  
Source Organisms  
Biological Activities  
Similar NPs/Drugs  

  Natural Product: NPC237783

Natural Product ID:  NPC237783
Common Name*:   COKIPKAOLSMHOF-PZYODIIOSA-N
IUPAC Name:   n.a.
Synonyms:  
Standard InCHIKey:  COKIPKAOLSMHOF-PZYODIIOSA-N
Standard InCHI:  InChI=1S/C25H32O4/c1-18(2)14-23-16-22(25(27)29-23)13-7-11-20(4)9-5-8-19(3)10-6-12-21-15-24(26)28-17-21/h6,9-10,12-15,23H,5,7-8,11,16-17H2,1-4H3/b12-6+,19-10+,20-9+,22-13-/t23-/m0/s1
SMILES:  CC(=C[C@H]1C/C(=C/CC/C(=C/CC/C(=C/C=C/C2=CC(=O)OC2)/C)/C)/C(=O)O1)C
Synthetic Gene Cluster:   n.a.
ChEMBL Identifier:   n.a.
PubChem CID:   n.a.
Chemical Classification**:  
  • CHEMONTID:0000000 [Organic compounds]
    • [CHEMONTID:0000012] Lipids and lipid-like molecules
      • [CHEMONTID:0000259] Prenol lipids
        • [CHEMONTID:0001283] Terpene lactones
          • [CHEMONTID:0001538] Diterpene lactones

*Note: the InCHIKey will be temporarily assigned as the "Common Name" if no IUPAC name or alternative short name is available.
**Note: the Chemical Classification was calculated by NPClassifier Version 1.5. Reference: PMID:34662515.

  Species Source

Organism ID Organism Name Taxonomy Level Family SuperKingdom Isolation Part Collection Location Collection Time Reference
NPO8737 Saussurea muliensis Species Asteraceae Eukaryota flowers and roots Muli Autonomous County of Sichuan, China 2005-AUG PMID[18419156]
NPO9626 Aconitum finetianum Species Ranunculaceae Eukaryota n.a. n.a. n.a. Database[HerDing]
NPO3770 Drosera rotundifolia Species Droseraceae Eukaryota n.a. n.a. n.a. Database[HerDing]
NPO9247 Bupleurum smithii Species Apiaceae Eukaryota n.a. n.a. n.a. Database[HerDing]
NPO9626 Aconitum finetianum Species Ranunculaceae Eukaryota n.a. n.a. n.a. Database[TCMID]
NPO9247 Bupleurum smithii Species Apiaceae Eukaryota n.a. n.a. n.a. Database[TCMID]
NPO3770 Drosera rotundifolia Species Droseraceae Eukaryota n.a. n.a. n.a. Database[TCMID]
NPO11920 Geraea canescens Species Asteraceae Eukaryota n.a. n.a. n.a. Database[TCMID]
NPO9626 Aconitum finetianum Species Ranunculaceae Eukaryota n.a. n.a. n.a. Database[TCM_Taiwan]
NPO9247 Bupleurum smithii Species Apiaceae Eukaryota n.a. n.a. n.a. Database[TCM_Taiwan]
NPO9626 Aconitum finetianum Species Ranunculaceae Eukaryota n.a. n.a. n.a. Database[UNPD]
NPO3770 Drosera rotundifolia Species Droseraceae Eukaryota n.a. n.a. n.a. Database[UNPD]
NPO8737 Saussurea muliensis Species Asteraceae Eukaryota n.a. n.a. n.a. Database[UNPD]
NPO9247 Bupleurum smithii Species Apiaceae Eukaryota n.a. n.a. n.a. Database[UNPD]
NPO11920 Geraea canescens Species Asteraceae Eukaryota n.a. n.a. n.a. Database[UNPD]

☑ Note for Reference:
In addition to directly collecting NP source organism data from primary literature (where reference will provided as NCBI PMID or DOI links), NPASS also integrated them from below databases:
UNPD: Universal Natural Products Database [PMID: 23638153].
StreptomeDB: a database of streptomycetes natural products [PMID: 33051671].
TM-MC: a database of medicinal materials and chemical compounds in Northeast Asian traditional medicine [PMID: 26156871].
TCM@Taiwan: a Traditional Chinese Medicine database [PMID: 21253603].
TCMID: a Traditional Chinese Medicine database [PMID: 29106634].
TCMSP: The traditional Chinese medicine systems pharmacology database and analysis platform [PMID: 24735618].
HerDing: a herb recommendation system to treat diseases using genes and chemicals [PMID: 26980517].
MetaboLights: a metabolomics database [PMID: 27010336].
FooDB: a database of constituents, chemistry and biology of food species [www.foodb.ca].

  NP Quantity Composition/Concentration

Organism ID NP ID Organism Material Preparation Organism Part NP Quantity (Standard) NP Quantity (Minimum) NP Quantity (Maximum) Quantity Unit Reference

☑ Note for Reference:
In addition to directly collecting NP quantitative data from primary literature (where reference will provided as NCBI PMID or DOI links), NPASS also integrated NP quantitative records for specific NP domains (e.g., NPS from foods or herbs) from domain-specific databases. These databases include:
DUKE: Dr. Duke's Phytochemical and Ethnobotanical Databases.
PHENOL EXPLORER: is the first comprehensive database on polyphenol content in foods [PMID: 24103452], its homepage can be accessed at here.
FooDB: a database of constituents, chemistry and biology of food species [www.foodb.ca].

  Biological Activity

Target ID Target Type Target Name Target Organism Activity Type Activity Relation Value Unit Reference

☑ Note for Activity Records:
☉ The quantitative biological activities were primarily integrated from ChEMBL (Version-30) database and were also directly collected from PubMed literature. PubMed PMID was provided as the reference link for each activity record.

  Chemically structural similarity: I. Similar Active Natural Products in NPASS

Top-200 similar NPs were calculated against the active-NP-set (includes 4,3285 NPs with experimentally-derived bioactivity available in NPASS)

Similarity level is defined by Tanimoto coefficient (Tc) between two molecules. Tc lies between [0, 1] where '1' indicates the highest similarity. What is Tanimoto coefficient

●  The left chart: Distribution of similarity level between NPC237783 and all remaining natural products in the NPASS database.
●  The right table: Most similar natural products (Tc>=0.56 or Top200).

Similarity Score Similarity Level Natural Product ID

  Chemically structural similarity: II. Similar Clinical/Approved Drugs

Similarity level is defined by Tanimoto coefficient (Tc) between two molecules.

●  The left chart: Distribution of similarity level between NPC237783 and all drugs/candidates.
●  The right table: Most similar clinical/approved drugs (Tc>=0.56 or Top200).

Similarity Score Similarity Level Drug ID Developmental Stage

  Bioactivity similarity: Similar Natural Products in NPASS

Bioactivity similarity was calculated based on bioactivity descriptors of compounds. The bioactivity descriptors were calculated by a recently developed AI algorithm Chemical Checker (CC) [Nature Biotechnology, 38:1087–1096, 2020; Nature Communications, 12:3932, 2021], which evaluated bioactivity similarities at five levels:
A: chemistry similarity;
B: biological targets similarity;
C: networks similarity;
D: cell-based bioactivity similarity;
E: similarity based on clinical data.

Those 5 categories of CC bioactivity descriptors were calculated and then subjected to manifold projection using UMAP algorithm, to project all NPs on a 2-Dimensional space. The current NP was highlighted with a small circle in the 2-D map. Below figures: left-to-right, A-to-E.

A: chemistry similarity
B: biological targets similarity
C: networks similarity
D: cell-based bioactivity similarity
E: similarity based on clinical data