Structure

Physi-Chem Properties

Molecular Weight:  194.17
Volume:  228.365
LogP:  3.601
LogD:  3.459
LogS:  -4.175
# Rotatable Bonds:  3
TPSA:  17.07
# H-Bond Aceptor:  1
# H-Bond Donor:  0
# Rings:  1
# Heavy Atoms:  1

MedChem Properties

QED Drug-Likeness Score:  0.625
Synthetic Accessibility Score:  3.296
Fsp3:  0.769
Lipinski Rule-of-5:  Accepted
Pfizer Rule:  Rejected
GSK Rule:  Accepted
BMS Rule:  0
Golden Triangle Rule:  Rejected
Chelating Alert:  0
PAINS Alert:  0

ADMET Properties (ADMETlab2.0)

ADMET: Absorption

Caco-2 Permeability:  -4.479
MDCK Permeability:  1.6097679690574296e-05
Pgp-inhibitor:  0.379
Pgp-substrate:  0.001
Human Intestinal Absorption (HIA):  0.006
20% Bioavailability (F20%):  0.957
30% Bioavailability (F30%):  0.906

ADMET: Distribution

Blood-Brain-Barrier Penetration (BBB):  0.86
Plasma Protein Binding (PPB):  94.7860107421875%
Volume Distribution (VD):  1.388
Pgp-substrate:  5.175537109375%

ADMET: Metabolism

CYP1A2-inhibitor:  0.239
CYP1A2-substrate:  0.725
CYP2C19-inhibitor:  0.312
CYP2C19-substrate:  0.915
CYP2C9-inhibitor:  0.298
CYP2C9-substrate:  0.951
CYP2D6-inhibitor:  0.011
CYP2D6-substrate:  0.888
CYP3A4-inhibitor:  0.054
CYP3A4-substrate:  0.225

ADMET: Excretion

Clearance (CL):  8.559
Half-life (T1/2):  0.324

ADMET: Toxicity

hERG Blockers:  0.008
Human Hepatotoxicity (H-HT):  0.36
Drug-inuced Liver Injury (DILI):  0.039
AMES Toxicity:  0.003
Rat Oral Acute Toxicity:  0.021
Maximum Recommended Daily Dose:  0.061
Skin Sensitization:  0.11
Carcinogencity:  0.086
Eye Corrosion:  0.919
Eye Irritation:  0.942
Respiratory Toxicity:  0.503

Download Data

Data Type Select
General Info & Identifiers & Properties  
Structure MOL file  
Source Organisms  
Biological Activities  
Similar NPs/Drugs  

  Natural Product: NPC207549

Natural Product ID:  NPC207549
Common Name*:   JHJCHCSUEGPIGE-UHFFFAOYSA-N
IUPAC Name:   n.a.
Synonyms:  
Standard InCHIKey:  JHJCHCSUEGPIGE-UHFFFAOYSA-N
Standard InCHI:  InChI=1S/C13H22O/c1-10-6-5-9-13(3,4)12(10)8-7-11(2)14/h6,12H,5,7-9H2,1-4H3
SMILES:  CC1=CCCC(C)(C)C1CCC(=O)C
Synthetic Gene Cluster:   n.a.
ChEMBL Identifier:   n.a.
PubChem CID:   35821
Chemical Classification**:  
  • CHEMONTID:0000000 [Organic compounds]
    • [CHEMONTID:0000012] Lipids and lipid-like molecules
      • [CHEMONTID:0000259] Prenol lipids
        • [CHEMONTID:0001550] Sesquiterpenoids

*Note: the InCHIKey will be temporarily assigned as the "Common Name" if no IUPAC name or alternative short name is available.
**Note: the Chemical Classification was calculated by NPClassifier Version 1.5. Reference: PMID:34662515.

  Species Source

Organism ID Organism Name Taxonomy Level Family SuperKingdom Isolation Part Collection Location Collection Time Reference
NPO17755 Inula helenium Species Asteraceae Eukaryota n.a. root n.a. PMID[10364842]
NPO17755 Inula helenium Species Asteraceae Eukaryota n.a. root n.a. PMID[12392098]
NPO25825 Saussurea lappa Species Asteraceae Eukaryota Roots n.a. n.a. PMID[14510592]
NPO17755 Inula helenium Species Asteraceae Eukaryota n.a. n.a. n.a. PMID[23501116]
NPO17755 Inula helenium Species Asteraceae Eukaryota n.a. n.a. n.a. PMID[24996657]
NPO17755 Inula helenium Species Asteraceae Eukaryota n.a. root n.a. PMID[25767328]
NPO25825 Saussurea lappa Species Asteraceae Eukaryota n.a. n.a. n.a. PMID[3572418]
NPO17755 Inula helenium Species Asteraceae Eukaryota n.a. n.a. n.a. Database[HerDing]
NPO17755 Inula helenium Species Asteraceae Eukaryota n.a. n.a. n.a. Database[TCMID]
NPO25825 Saussurea lappa Species Asteraceae Eukaryota n.a. n.a. n.a. Database[TCMID]
NPO10391 Dolomiaea souliei Species Asteraceae Eukaryota n.a. n.a. n.a. Database[TCMID]
NPO10391 Dolomiaea souliei Species Asteraceae Eukaryota n.a. n.a. n.a. Database[TM-MC]
NPO17755 Inula helenium Species Asteraceae Eukaryota n.a. n.a. n.a. Database[TM-MC]
NPO25825 Saussurea lappa Species Asteraceae Eukaryota n.a. n.a. n.a. Database[TM-MC]
NPO17755 Inula helenium Species Asteraceae Eukaryota n.a. n.a. n.a. Database[UNPD]
NPO25825 Saussurea lappa Species Asteraceae Eukaryota n.a. n.a. n.a. Database[UNPD]
NPO10391 Dolomiaea souliei Species Asteraceae Eukaryota n.a. n.a. n.a. Database[UNPD]

☑ Note for Reference:
In addition to directly collecting NP source organism data from primary literature (where reference will provided as NCBI PMID or DOI links), NPASS also integrated them from below databases:
UNPD: Universal Natural Products Database [PMID: 23638153].
StreptomeDB: a database of streptomycetes natural products [PMID: 33051671].
TM-MC: a database of medicinal materials and chemical compounds in Northeast Asian traditional medicine [PMID: 26156871].
TCM@Taiwan: a Traditional Chinese Medicine database [PMID: 21253603].
TCMID: a Traditional Chinese Medicine database [PMID: 29106634].
TCMSP: The traditional Chinese medicine systems pharmacology database and analysis platform [PMID: 24735618].
HerDing: a herb recommendation system to treat diseases using genes and chemicals [PMID: 26980517].
MetaboLights: a metabolomics database [PMID: 27010336].
FooDB: a database of constituents, chemistry and biology of food species [www.foodb.ca].

  NP Quantity Composition/Concentration

Organism ID NP ID Organism Material Preparation Organism Part NP Quantity (Standard) NP Quantity (Minimum) NP Quantity (Maximum) Quantity Unit Reference

☑ Note for Reference:
In addition to directly collecting NP quantitative data from primary literature (where reference will provided as NCBI PMID or DOI links), NPASS also integrated NP quantitative records for specific NP domains (e.g., NPS from foods or herbs) from domain-specific databases. These databases include:
DUKE: Dr. Duke's Phytochemical and Ethnobotanical Databases.
PHENOL EXPLORER: is the first comprehensive database on polyphenol content in foods [PMID: 24103452], its homepage can be accessed at here.
FooDB: a database of constituents, chemistry and biology of food species [www.foodb.ca].

  Biological Activity

Target ID Target Type Target Name Target Organism Activity Type Activity Relation Value Unit Reference
NPT21312 SINGLE PROTEIN Diacylglycerol O-acyltransferase 1 Bos taurus Inhibition = 13.0 % PMID[537137]
NPT21313 SINGLE PROTEIN Lecithin retinol acyltransferase Bos taurus Inhibition = 18.0 % PMID[537137]

☑ Note for Activity Records:
☉ The quantitative biological activities were primarily integrated from ChEMBL (Version-30) database and were also directly collected from PubMed literature. PubMed PMID was provided as the reference link for each activity record.

  Chemically structural similarity: I. Similar Active Natural Products in NPASS

Top-200 similar NPs were calculated against the active-NP-set (includes 4,3285 NPs with experimentally-derived bioactivity available in NPASS)

Similarity level is defined by Tanimoto coefficient (Tc) between two molecules. Tc lies between [0, 1] where '1' indicates the highest similarity. What is Tanimoto coefficient

●  The left chart: Distribution of similarity level between NPC207549 and all remaining natural products in the NPASS database.
●  The right table: Most similar natural products (Tc>=0.56 or Top200).

Similarity Score Similarity Level Natural Product ID

  Chemically structural similarity: II. Similar Clinical/Approved Drugs

Similarity level is defined by Tanimoto coefficient (Tc) between two molecules.

●  The left chart: Distribution of similarity level between NPC207549 and all drugs/candidates.
●  The right table: Most similar clinical/approved drugs (Tc>=0.56 or Top200).

Similarity Score Similarity Level Drug ID Developmental Stage

  Bioactivity similarity: Similar Natural Products in NPASS

Bioactivity similarity was calculated based on bioactivity descriptors of compounds. The bioactivity descriptors were calculated by a recently developed AI algorithm Chemical Checker (CC) [Nature Biotechnology, 38:1087–1096, 2020; Nature Communications, 12:3932, 2021], which evaluated bioactivity similarities at five levels:
A: chemistry similarity;
B: biological targets similarity;
C: networks similarity;
D: cell-based bioactivity similarity;
E: similarity based on clinical data.

Those 5 categories of CC bioactivity descriptors were calculated and then subjected to manifold projection using UMAP algorithm, to project all NPs on a 2-Dimensional space. The current NP was highlighted with a small circle in the 2-D map. Below figures: left-to-right, A-to-E.

A: chemistry similarity
B: biological targets similarity
C: networks similarity
D: cell-based bioactivity similarity
E: similarity based on clinical data