Structure

Physi-Chem Properties

Molecular Weight:  300.12
Volume:  287.21
LogP:  -0.712
LogD:  -0.622
LogS:  -1.066
# Rotatable Bonds:  5
TPSA:  119.61
# H-Bond Aceptor:  7
# H-Bond Donor:  5
# Rings:  2
# Heavy Atoms:  7

MedChem Properties

QED Drug-Likeness Score:  0.444
Synthetic Accessibility Score:  3.357
Fsp3:  0.571
Lipinski Rule-of-5:  Accepted
Pfizer Rule:  Accepted
GSK Rule:  Accepted
BMS Rule:  0
Golden Triangle Rule:  Accepted
Chelating Alert:  0
PAINS Alert:  0

ADMET Properties (ADMETlab2.0)

ADMET: Absorption

Caco-2 Permeability:  -5.493
MDCK Permeability:  6.590772682102397e-05
Pgp-inhibitor:  0.005
Pgp-substrate:  0.013
Human Intestinal Absorption (HIA):  0.854
20% Bioavailability (F20%):  0.006
30% Bioavailability (F30%):  0.987

ADMET: Distribution

Blood-Brain-Barrier Penetration (BBB):  0.297
Plasma Protein Binding (PPB):  42.089195251464844%
Volume Distribution (VD):  0.42
Pgp-substrate:  37.59965133666992%

ADMET: Metabolism

CYP1A2-inhibitor:  0.111
CYP1A2-substrate:  0.051
CYP2C19-inhibitor:  0.02
CYP2C19-substrate:  0.287
CYP2C9-inhibitor:  0.002
CYP2C9-substrate:  0.258
CYP2D6-inhibitor:  0.008
CYP2D6-substrate:  0.261
CYP3A4-inhibitor:  0.006
CYP3A4-substrate:  0.065

ADMET: Excretion

Clearance (CL):  1.727
Half-life (T1/2):  0.749

ADMET: Toxicity

hERG Blockers:  0.147
Human Hepatotoxicity (H-HT):  0.048
Drug-inuced Liver Injury (DILI):  0.046
AMES Toxicity:  0.225
Rat Oral Acute Toxicity:  0.013
Maximum Recommended Daily Dose:  0.004
Skin Sensitization:  0.508
Carcinogencity:  0.654
Eye Corrosion:  0.005
Eye Irritation:  0.5
Respiratory Toxicity:  0.021

Download Data

Data Type Select
General Info & Identifiers & Properties  
Structure MOL file  
Source Organisms  
Biological Activities  
Similar NPs/Drugs  

  Natural Product: NPC163826

Natural Product ID:  NPC163826
Common Name*:   OJDSCNUKKOKOQJ-RKQHYHRCSA-N
IUPAC Name:   n.a.
Synonyms:  
Standard InCHIKey:  OJDSCNUKKOKOQJ-RKQHYHRCSA-N
Standard InCHI:  InChI=1S/C14H20O7/c15-6-5-8-1-3-9(4-2-8)20-14-13(19)12(18)11(17)10(7-16)21-14/h1-4,10-19H,5-7H2/t10-,11-,12+,13-,14-/m1/s1
SMILES:  c1cc(ccc1CCO)O[C@H]1[C@@H]([C@H]([C@@H]([C@@H](CO)O1)O)O)O
Synthetic Gene Cluster:   n.a.
ChEMBL Identifier:   n.a.
PubChem CID:   10614148
Chemical Classification**:  
  • CHEMONTID:0000000 [Organic compounds]
    • [CHEMONTID:0004603] Organic oxygen compounds
      • [CHEMONTID:0000323] Organooxygen compounds
        • [CHEMONTID:0000011] Carbohydrates and carbohydrate conjugates
          • [CHEMONTID:0002105] Glycosyl compounds
            • [CHEMONTID:0004165] Phenolic glycosides

*Note: the InCHIKey will be temporarily assigned as the "Common Name" if no IUPAC name or alternative short name is available.
**Note: the Chemical Classification was calculated by NPClassifier Version 1.5. Reference: PMID:34662515.

  Species Source

Organism ID Organism Name Taxonomy Level Family SuperKingdom Isolation Part Collection Location Collection Time Reference
NPO7850 Schisandra propinqua Species Schisandraceae Eukaryota n.a. stem n.a. DOI[10.1002/cjoc.20010190319]
NPO7850 Schisandra propinqua Species Schisandraceae Eukaryota n.a. stem n.a. DOI[10.1016/j.tet.2008.10.079]
NPO7850 Schisandra propinqua Species Schisandraceae Eukaryota n.a. stem n.a. PMID[11395273]
NPO7850 Schisandra propinqua Species Schisandraceae Eukaryota n.a. stem n.a. PMID[18536373]
NPO7850 Schisandra propinqua Species Schisandraceae Eukaryota aerial parts Erlang Mountain area of Sichuan Province, China 2007-SEP PMID[19413342]
NPO7850 Schisandra propinqua Species Schisandraceae Eukaryota n.a. n.a. n.a. PMID[20681569]
NPO7850 Schisandra propinqua Species Schisandraceae Eukaryota n.a. n.a. n.a. Database[TCMID]
NPO7128 Cynthia savignyi n.a. n.a. n.a. n.a. n.a. n.a. Database[UNPD]
NPO7374 Seseli montanum Species Apiaceae Eukaryota n.a. n.a. n.a. Database[UNPD]
NPO7850 Schisandra propinqua Species Schisandraceae Eukaryota n.a. n.a. n.a. Database[UNPD]
NPO11167 Prunus ssiori Species Rosaceae Eukaryota n.a. n.a. n.a. Database[UNPD]
NPO9834 Veronica austriaca Species Plantaginaceae Eukaryota n.a. n.a. n.a. Database[UNPD]
NPO6903 Lecanora straminea Species Lecanoraceae Eukaryota n.a. n.a. n.a. Database[UNPD]

☑ Note for Reference:
In addition to directly collecting NP source organism data from primary literature (where reference will provided as NCBI PMID or DOI links), NPASS also integrated them from below databases:
UNPD: Universal Natural Products Database [PMID: 23638153].
StreptomeDB: a database of streptomycetes natural products [PMID: 33051671].
TM-MC: a database of medicinal materials and chemical compounds in Northeast Asian traditional medicine [PMID: 26156871].
TCM@Taiwan: a Traditional Chinese Medicine database [PMID: 21253603].
TCMID: a Traditional Chinese Medicine database [PMID: 29106634].
TCMSP: The traditional Chinese medicine systems pharmacology database and analysis platform [PMID: 24735618].
HerDing: a herb recommendation system to treat diseases using genes and chemicals [PMID: 26980517].
MetaboLights: a metabolomics database [PMID: 27010336].
FooDB: a database of constituents, chemistry and biology of food species [www.foodb.ca].

  NP Quantity Composition/Concentration

Organism ID NP ID Organism Material Preparation Organism Part NP Quantity (Standard) NP Quantity (Minimum) NP Quantity (Maximum) Quantity Unit Reference

☑ Note for Reference:
In addition to directly collecting NP quantitative data from primary literature (where reference will provided as NCBI PMID or DOI links), NPASS also integrated NP quantitative records for specific NP domains (e.g., NPS from foods or herbs) from domain-specific databases. These databases include:
DUKE: Dr. Duke's Phytochemical and Ethnobotanical Databases.
PHENOL EXPLORER: is the first comprehensive database on polyphenol content in foods [PMID: 24103452], its homepage can be accessed at here.
FooDB: a database of constituents, chemistry and biology of food species [www.foodb.ca].

  Biological Activity

Target ID Target Type Target Name Target Organism Activity Type Activity Relation Value Unit Reference

☑ Note for Activity Records:
☉ The quantitative biological activities were primarily integrated from ChEMBL (Version-30) database and were also directly collected from PubMed literature. PubMed PMID was provided as the reference link for each activity record.

  Chemically structural similarity: I. Similar Active Natural Products in NPASS

Top-200 similar NPs were calculated against the active-NP-set (includes 4,3285 NPs with experimentally-derived bioactivity available in NPASS)

Similarity level is defined by Tanimoto coefficient (Tc) between two molecules. Tc lies between [0, 1] where '1' indicates the highest similarity. What is Tanimoto coefficient

●  The left chart: Distribution of similarity level between NPC163826 and all remaining natural products in the NPASS database.
●  The right table: Most similar natural products (Tc>=0.56 or Top200).

Similarity Score Similarity Level Natural Product ID

  Chemically structural similarity: II. Similar Clinical/Approved Drugs

Similarity level is defined by Tanimoto coefficient (Tc) between two molecules.

●  The left chart: Distribution of similarity level between NPC163826 and all drugs/candidates.
●  The right table: Most similar clinical/approved drugs (Tc>=0.56 or Top200).

Similarity Score Similarity Level Drug ID Developmental Stage

  Bioactivity similarity: Similar Natural Products in NPASS

Bioactivity similarity was calculated based on bioactivity descriptors of compounds. The bioactivity descriptors were calculated by a recently developed AI algorithm Chemical Checker (CC) [Nature Biotechnology, 38:1087–1096, 2020; Nature Communications, 12:3932, 2021], which evaluated bioactivity similarities at five levels:
A: chemistry similarity;
B: biological targets similarity;
C: networks similarity;
D: cell-based bioactivity similarity;
E: similarity based on clinical data.

Those 5 categories of CC bioactivity descriptors were calculated and then subjected to manifold projection using UMAP algorithm, to project all NPs on a 2-Dimensional space. The current NP was highlighted with a small circle in the 2-D map. Below figures: left-to-right, A-to-E.

A: chemistry similarity
B: biological targets similarity
C: networks similarity
D: cell-based bioactivity similarity
E: similarity based on clinical data