|
|
CZ5225
Modeling and Simulation in Biology (Elective, 4MC)
Synopsis
Prerequisite: CZ3252
Proteins: sequence => structure =>function. Protein structural
organizations and families. Basic modeling and simulation techniques.
Protein structural modeling: homology modeling, threading, ab initio
methods. Cell as a complex machine: Genetic and protein circuits (pathways).
Development
of a mathematical model of pathways. Computer simulation of pathways.
Instructor
Dr. Chen Yu Zong
Department of Computational Science
National University of Singapore
Office: Blk S17 Room 07-24
Tel: 6874-6877. Fax: 6774-6756
E-mail: yzchen@cz3.nus.edu.sg
Web: http://www.cz3.nus.edu.sg/~yzchen
(Lots of info about
biocomputing)
Lectures:
Archived
Lectures and Projects in 2007/2009:
Archived
Lectures and Projects in 2005/2006:
- Lectures:
- Project Assignments:
- Grade:
Archived
Lectures and Projects in 2004/2005:
- Lectures:
- Project Assignments:
- Project 1:
- Option
1: Protein family classification by SVM
- Option
2: Develop a program of pair-wise sequence alignment using
a simple scoring scheme.
- Project 2
: Design of structural modeling program
References:
Protein
families:
- A
genomic perspective on protein families. Science 278, 631-637 (1997)
- Unification
of protein families. Curr. Opin. Struct. Biol. 8, 372-379 (1998)
- Evolution
of function in protein superfamilies, from a structural perspective.
J. Mol. Biol. 307, 1113-1143.
- Transporters:
TC-DB
(Microbiol Mol Biol Rev. 64:354-411)
Protein
family prediction methods:
- Multiple
sequence alignments. JMB 235, 1501-153 (1994); JMB 301, 173-190.
- Neural
network: ProtFun.
J. Mol. Biol. 319:1257-1265, (2002)
- Support
vector machines: SVMProt. Nucleic Acids Res., 31: 3692-3697 (2003)
Sequence
alignment:
- Needleman-Wunsch
method: JMB 48, 443-453 (1970)
- PAM:
A model of evolutionary change in proteins. In: Atlas of protein sequence
and structure (Natl. Biomed. Res. Found. Washington) Vol 5, Suppl
3. pp.345-358 (1978).
- Smith-Waterman
method: JMB 147, 195-197 (1981)
- FASTA:
Proc. Natl. Acad. Sci. USA 85, 2444 (1988)
- BLAST:
JMB 215, 403-410 (1990).
- BLOSUM:
Proc. Natl. Acad. Sci. USA 89, 10915-10919 (1992)
- HMM:
JMB 235, 1501-153 (1994)
Support
vector machines:
- C.
Burges, "A tutorial on support vector machines for pattern recognition",
Data Mining and Knowledge Discovery, Kluwer Academic Publishers,1998
(on-line).
- R.
Duda, P. Hart, and D. Stork, Pattern Classification, John-Wiley, 2nd
edition, 2001 (section 5.11, hard-copy).
- S.
Gong et al. Dynamic Vision: From Images to Face Recognition, Imperial
College Pres, 2001 (sections 3.6.2, 3.7.2, hard copy).
Protein
structure
- SCOP database.
J. Mol. Biol. 247, 536-540
Molecular
modelling:
- AMBER:
J. Am. Chem. Soc. 117, 5179-5197
- CHARMM:
J. Comp. Chem. 4, 187-217
- Hydrogen
bond model and parameters: Nucleic Acids Res. 20, 415-419. Biophys.
J. 66, 820-826
- Biomolecular
simulations: Recent developments in force fields, simulations of enzyme
catalysis, protein-ligand, protein-protein, and protein nucleic acid
noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30,
211-243 (2001).
Protein
structure prediction methods:
- Protein
folding theory: From lattice to all-atom models. Annu. Rev. Biomol.
Struct. 30, 361-396 (2001).
- Knowledge-based
protein modelling. Critical Rev. Biochem. Mol. Biol. 29, 1-68 (1994).
- Comparative
protein structure modelling of genes and genomes. Annu. Rev. Biophys.
Biomol. Struct. 29, 291-325 (2000).
- Ab
initio protein structure prediction: Progress and prospects. Annu.
Rev. Biophys. Biomol. Struct. 30, 173-189.
Biological
pathway databases:
Pathway
simulation methods:
- Dynamic
biochemical reaction process analysis and pathway modification predictions.
Biotechnol. Bioeng. 68, 285-297 (2000)
- A
mathematical model of caspase function in apoptosis. Nature Biotech.
18, 768-774 (2000)
|
|