|
|
CZ4101: Matrix Computations
Synopsis
Linear equations. Least-squares
problems. Symmetric eigenvalue problem. Singular-value decomposition,
QR and Cholesky factorization. Iterative methods, conjugate gradient method.
Linear algebra libraries (e.g. BLAS, Lapack).
Instructor
Dr. Chen Yu Zong
Department of Computational Science
National University of Singapore
Office: Blk S17 Room 07-24
Tel: 6874-6877. Fax: 6774-6756
E-mail: yzchen@cz3.nus.edu.sg
Web: http://www.cz3.nus.edu.sg/~yzchen
(Lots of info about
biocomputing)
Schedule
- Lectures:
- Labs:
- Tutorials:
- Grade:
- Final exam,
- Mid-term exam,
- Lab
- Exams:
- One mid-term
exam:
- One final exam:
Module
Outline
- Introduction
- Gaussian Elimination
and Its Variants
- Sensitivity of
Linear Systems: Effects of Roundoff Errors
- Orthogonal Matrices
and the Least-Squares Problem
- Eigenvalues and
Eigenvectors I
- Eigenvalues and
Eigenvectors II
- Other Methods
for the Symmetric Eigenvalue Problem
- The Singular Value
Decomposition Appendices
Lab
Schedule
Tutorials
Tutorials
A
Note About Textbook
-
Fundamentals of Matrix Computations. David S.
Watkins. John Wiley, Singapore, 1991. ISBN 0-471-61414-9.
References:
-
Matrix Computations.
Gene H. Golub and Charles F. Van Loan, Johns Hopkins University,
Press, Baltimore, 1996. ISBN 0-8018-5414-8
-
Numerical Linear Algebra.
Lloyd N. Trefethen and avid Bau, III, Society for Industrial and Applied
Mathematics, Philadelphia, 1997. ISBN 0-89871-361-7
|
Homework
assignments
Solutions to tutorial
Solutions to Lab
|