Support Vector Machines

Although the basis of support vector machine had been laid in the 1960s, the idea of support vector machine was only officially proposed in 1995 by Vapnik and his co-workers [1, 2]. Then, the research on its theoretical aspects and application aspects soared up because of the strong predictive power that this statistical learning algorithm had shown. It has been applied in a wide range of problems including text categorization [3, 4], hand-written digit recognition [1], image classification and object detection [5, 6], flood stage forecasting [7], micro-array gene expression data analysis [8], drug design [9], prediction of protein solvent accessibility [10], protein fold recognition [11], protein secondary structure prediction [12], prediction of protein-protein interaction [13]. These studies have demonstrated that SVM is consistently superior to other supervised learning methods [8, 9, 14]. 
Support vector machine (SVM) separates a given set of labeled training examples in a multi-dimensional space via a hyper-plane optimally positioned between the positive samples and negative samples. The test examples are then placed onto this multi-dimensional space to recognize which are positive and which are negative based on their relative positions to the hyper-plane. For most of real-world problems, the dataset can not be separated by this linear method. Special “kernels” are introduced in SVM to automatically conduct nonlinear mapping from the input space onto a high-dimensional feature space in which the training examples can be linearly separated. The optimal hyper-plane thus determined in the feature space corresponds to a nonlinear decision boundary in the input space. 
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Let the training data of two separable classes, which contains n samples, be represented by 
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indicates class label. Given a weight vector 
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 and a bias 
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 (figure 1), it is assumed that these examples can be separated by a hyperplane with a margin of 1:
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Equation 1
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Equation 2
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is a vector of 
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Equation 1 and Equation 2 can be combined into a single inequality:
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Equation 3
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As shown in Figure 2, there exist a number of separating hyperplanes for an identical group of training data. The objective of SVM is to determine the optimal weight 
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 and optimal bias 
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 such that the corresponding hyperplane separates the positive and negative training data with maximum margin, which is expected to produce the best generalization performance. This hyperplane (Figure 2(b)) is called the Optimal Separating Hyperplane (OSH).

The equation for an arbitrary hyperplane can be written as 
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Equation 4
and the width of the two corresponding margins is
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Equation 5
Given the constraint Equation 3, one obtains
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Equation 6
The OSH can therefore be obtained by minimizing the norm of 
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 under the inequality constraint Equation 3. The saddle point of the following Lagrangian gives solutions to the above optimization problem:
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Equation 7
where
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are Lagrange multipliers. The solution to this Quadratic Programming (QP) problem requires that the gradient of 
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Equation 8
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Equation 9
By substituting Equation 8 and Equation 9 into Equation 7, the QP problem becomes the maximization of the following expression:
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Equation 10
under the constraints 
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The points located on the two optimal margins will have non-zero coefficients 
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 among the solutions to Equation 3.20, and are called Support Vectors (SVs). The bias 
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 can be calculated as follows:
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Equation 11
After determination of support vectors and bias, the decision function that separates the two classes can be written as
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Equation 12
Real-world problem are usually nonlinear in nature. The linear classification scheme described above is thus inapplicable to these problems. A nonlinear classification scheme can be introduced such that the original training data x in the input space 
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 is projected into a high-dimensional feature space 
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 via a Mercer kernel operator 
[image: image44.wmf]K

 [15, 16] followed by the construction of OSH in the feature space (Figure 3). 
Mathematically, the above set of equations is transformed into the following form by substituting the inner product in input space
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Equation 13
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Equation 14

In this case, the Kernel function can represent a legitimate inner product in a feature space:
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Equation 15
where 
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 is an implicit mapping function from the input space to the feature space 
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In 
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, the dual Lagrangian, given in Equation 3.20, becomes
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Equation 16

Thus the decision function changes to be
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Equation 17
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Equation 18


Linear classification can also be integrated in the non-Linear classification framework. By defining
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, the equations for non-linear classification immediately become equations for linear classification.
Usually, many candidate kernel functions can be used in a SVM, such as Polynomial kernel
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, and others [17], as well as their combinations such as the sum or tensor products of kernels. Among them, Gaussian kernel is the most popular one and we use Gaussian kernel in our classification. Usually, there are some parameters to be optimized in kernel function, such as the parameter 
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 in a Gaussian kernel.
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Figure 1: Definition of Hyperplane and Margin. The circular dots and square dots represent samples of class -1 and class +1, respectively.





Figure 2: Available separating hyperplanes and Optimal Separating Hyperplane�(a) Available Hyperplanes H, H’, H’’,…�(b) Unique Optimal Separation Hyperplane
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Figure 3: Project the training data nonlinearly into a higher-dimensional feature space and construct a hyperplane to separate positive and negative datasets with maximum margin there. 
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